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The heat flux between phases is calculated as a function of the degree of submer- 
sion and the temperature of the bath on the basis of solution of the hydrodynamic 
problem for superfluid helium. 

The possibility of utilizing superfluid helium as a coolant in cryogenic systems (see 
the surveys [i, 2], say) has been discussed extensively recently. Heat transfer with this 
medium is realized quite uniquely in the film nucleation mode. One of the classical papers 
on He iI boiling is the paper by W. Rivers and P. MacFadden [3], in which helium boiling on a 
cylinder and vertical plate was studied by using a boundary-layer approximation in avapor 
film (or a He I film). The role of the superfluid helium was here reduced to the fact that 
it regulated the heat flux, transferred from the phase interface to the free surface. This 
quantity, denoted as qB(TB, H) in [3], was the parameter of Rivers and MacFadden's theory and 
not calculated. 

The quantity qB was computed from the viewpoint of a nonequilibrium molecular theory in 
[4]. The main idea of the paper was to take into account that the interphasal heat flux pro- 
duces an additional pressure due to the nonequilibrium of the process. However, even here a 
certain assumption was utilized about the proportionality of this heat flux to the tempera- 
ture drop in helium: A = T~ -- T B. The proportionality factor is here an adjustment param- 
eter determined from comparison with experiment. Therefore, the question of a theoretical 
set-up of the relationship between the quantities qB, H, and T B remains open. The problem 
of the temperature T and pressure p distributions and the velocity of the normal component v n 
in the superfluid helium layer bounding its vapor or solid surface (from below) is solved in 
the paper presented. On the basis of the solution of this problem, the interphasal heat flux 
qB is solved as a function of the free surface temperature T B and the degree of submersion H. 

i. Case of Small Heat Fluxes 

Let us consider an infinite horizontal plate submerged a depth H in superfluid helium, 
at which the heat flux q > qcr is liberated, i.e., a film boiling mode is realized. The tem- 
perature in the He II surface is T B and the saturation pressure PB corresponds. Since the 
thickness of the vapor film ~ is small compared with H, we shall consider the phase inter- 
face to be at the depth H also. We take this surface as the origin (x is here directed up- 
ward). 

For the sequel, it is useful to recall the discussion of Rivers and MacFadden [3] re- 
sulting in the deduction about the existence of a flux qB given uniquely by the quantities H 
and T B. We consider the phase diagram of helium (Fig. i). Let the point A correspond to 
the free helium surface. The assumption was made in [3] that there is no temperature drop 
in the helium volume, while the pressure varies according to the hydrostatic law p(x) = PB + 
pg(H -- x). Consequently, the state of the helium near the heating element is portrayed by 
the point B on the segment of the isotherm AB. Since the lower boundary is assumed in thermo- 
dynamic equilibrium with the vapor, then its temperature is fixed and determined by the 
saturation curve (the point C). Rivers and MacFadden [3] therefore arrived at the deduction 
about the existence of a temperature jump on the lower boundary of the helium volume, which 
should correspond, in their opinion, to a strictly definite heat flux density qB" It is 
evident from the discussion that this density is determined just by the degree of submersion 
H and the temperature T B. It will be shown below that this reasoning is not totally accurate. 

As is kno~ (see [2], say), quantized vortex filaments develop in helium flows with velo- 
cities exceeding 10 -I cm/sec (which corresponds to heat fluxes q = 10 -3 W/cm2). Since heat 
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Fig. i. Helium phase diagram: 1-3) thermodynamic state of helium 
with the heat flux qB present; curve 1 is taken from [3], while 
curves 2 and 3 correspond to the results in this paper. 

Fig. 2. Schematic diaplay of the dependence of the normal veloc- 
ity component v n on the coordinate x. 

fluxes in helium boiling are known to exceed t h~s quantity, it is then necessary to use the 
equations of helium motion that take account of the existence of such vortexfilaments. Such 
equations were obtained by Lebedev and Nemirovskii in [5]. In order not to complicate the text 
excessively, we do not write these complex equations down, especially for the case which is 
to be investigated when they simplify substantially. We discuss only the conditions resulting 
in simplification of the equations, referring here to the original paper [5]. 

First, we are interested in the stationary case (~/~t = 0). This permits expressing 
the quantity L in [5] (the density of the vortex ball) in terms of the normal and superfluid 
velocity components L = ~2/B2(Vn--Vs) 2. Furthermore, since there is no total mass flux, then 
j = PsVs + PnVn = O. This permits elimination of one of the velocities Vs, say, from the equa- 
tions. For the case of small fluxes, the nonlinear terms of the equation can be omitted and 
their influence will be discussed below. Here, however, the nonlinear term which is substan- 
tially the Gorter--Meliink force (see [2]) must be retained in the equation for the superfluid 
velocity component since it governs the temperature drop in the helium bulk. Indeed, in the 
absence of this force an infinitesimal temperature gradient can cause enormous heat fluxes 
capable of producing compact vortex balls. The mutual friction force hinders infinite growth 
of the heat flux. Furthermore, although terms corresponding to ordinary dissipative effects 
are omitted in [5], they should be included becausethe influence of viscosity is substantial 
near the boundary x = O. Consequently, we arrive at the following system of equations 

Op 4 OZv~ a2v~ O~vn 
+ o g  =- -~ -n  --C~p _-----+ ;~  ,, (1) lll0X 

0~ Ox o# 

_ s  aT oo ~ .o2o. ( o ) '  (2) 

s or. ~__ 0~__TT ~ 0. (3) 
Ox T Ox~ 

Let us clarify the meaning of (i)-(3).* Equation (i) is the conservation law for mo- 
mentum flux. There are no nonlinear terms therein, but viscous terms are included in the mo- 
mentum flux tensor [6]. Relationship (2) is the equation for the motion of the superfluid com- 
ponent in which the velocity v s is replaced by-n0nVn/Ps. Here the mutual friction forces, the 
viscous terms, and the gravitational term pg are added. The last equation (3)~is the entropy 
conservation law. The irreversible heat flux ~ (dT/dx) is therein besides the equilibrium 
entropy flux Sv n. 

Relationships (1)-(3) are a closed system of equations for the quantities T, p, and v n- 
This system must be supplemented by boundary conditions. We select the following: 

T(0)=T6, p(0)=ps, T(H)=Tn, p(n)=p~,  (4) 

*Here and henceforth, Vn(Vs) denotes the x components of the vectors Vn(Vs). 
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where T6, p6, as well as TB, PB are interrelated by thermodynamic equilibrium conditions (they 

belong to the saturation curve). 

The first integral of (3) has the form 

Sv~ • OT = const.  ( 5 )  
T Ox 

The integration constant in the physical sense is qB/T, since (5) describes the heat flux. 

After evident manipulations, (I), (2), and (5) reduce to the form 

S~T Sqb . 02v~ [ p_.p___\8 3 
- - v .  - -  - - -  l l ( 6 )  x ~ - - A t  ~x 2 + A ( T )  pp .  v . .  

\ P *  / 
4 

Here A~ = -~ -  ~ - -  ~lP - -  ~lP + ~ + Pz~s. 

The solutions of (6) contain two constants, and integration of (5) to determine the tem- 
perature field adds still another. We have available just two constants T(O) and T(H). 
Therefore, there is some arbitrariness apparently in determining the temperature, velocity, 
and flux fields. In particular, Vn(0) can be arbitrary. This means that any heat flux can cor- 
respond to a given temperature drop. It must be noted that conservation of the nonlinear 
terms also does not alter the situation being createdo Therefore, the assumption of Rivers 
and MacFadden about the single-valued connection between the temperature drop and the heat 
flux does not seem to be confirmed. 

The situation changes radically, however, when the quantum-mechanical nature of He II is 
taken into account. The fact is that the density of the superfluid component on the boundary 
of the system volume must vanish. This is a consequence of the quantum nature of superfluid 
helium according to which Ps is the modulus of a certain effective wave function that vanishes 
on the system boundary (see [7]). Since the total flux is 9sVs + pnVn = 0,.we obtain that v n 
should also vanish on the boundary. We have therefore obtained the missing boundary condi- 

tion Vn(0) = 0. 

The additional condition Vn(0) = 0 reduces the arbitrariness in the formulation of the 
problem and imposesa single-valued relationship between the temperature drop and the heat 
flux qB" Thus, the assumption of the existence of a definite qB as a function of T B and H 
is not as trivial as was represented earlier. 

Equation (6) is solved analytically, permitting obtaining and investigating the solu- 
tion of the problem posed in the most general form. We turn to dimensionless variables V 
and x' in (6), which are defined as follows: 

qB , X' = X' V / AT 
vn = V S T  SZT 

The q u a n t i t y  l ( A r x  ~1/2 = , with the physical meaning of the thickness of the near-bound- 
S=T ] 

ary heat wave, was encountered earlier in the literature [7, 8]. Equation (6) in the vari- 
ables V and x' takes the following form (we henceforth omit the prime): 

Here 

a2V (7) V - -  1 + A"V s = - -  
Ox 2 

A" = - - A  (T) P9,~ S~ T s �9 

The boundary conditions are the following: 

V (0) : O, V + V3A" Ix=M = 1. 

We solve (7). To do this, we make the substitution 3V/3x = Y. We then have 

02V 0 OV OY OY OY OV OY OY*/2 

O~ Ox Ox Ox ' Ox OV Ox OV OV 

( 8 )  

Substituting these relationships into (7), we obtain 
OY~/2 

OV 
- - =  V - - 1  + A"V ~, from which 
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V2__ 2 A"V~ + C1) 1/2. (9) Y =  2V + .  3... 

I n t e g r a t i n g  ( 9 ) ,  we have  t h a t  Y(x) i s  e x p r e s s e d  i m p l i c i t l y  by u s i n g  t h e  e l l i p t i c  i n t e g r a l  

v<~ OV 
= x ,  (lO) 

which yields the desired distribution V(x). Furthermore, by using (5) and (i), the tempera- 
ture T(x) and pressure p(x) distributions can be calculated. In the general case the left 
side of (I0) can be found numerically. However, in a large range of heat flux and tempera- 
ture quantities (far from T%), the term A"V 4 << 1 and the integral can be calculated by expand- 
ing the radical in series. Typical velocity, temperature, and pressure distribution patterns 
are displayed in Figs. 2-4. 

The magnitude of the normal velocity component (Fig. 2) changes radically for small x, 
i.e., near the lower phase interface. For very small A" the velocity is v n ~ (exp(x/l) -- i). 
As x grows Vn(X) approaches the asymptote almost equal to qB/ST. The slight difference from 
this quantity results because a certain part of the heat flux is transferred irreversibly be- 
cause of:the temperature gradient. More accurately, at large distances from the lower phase 
boundary, the following will be valid: 

aT q,=STv~--x ax" 

which understandably agrees with boundary condition (8). 

An abrupt change in the temperature curve (3) is observed near the helium lower boundary, 
which then smoothly approaches the asymptote defined by the equation 

a_/_T --A(D pp. S,T, 
ax 

The t o t a l  t e m p e r a t u r e  d rop  i s  e x p r e s s e d  as  f o l l o w s :  

q,H 
AT= ~ = - -  + A (T) ppn. (ll) 

ao ax x S4T s 

This formula is again valid for A" < i. Therefore, the total temperature change consists of 
the known temperature jump [7, 8] and the drop caused by the mutual friction [2]. For H = 
10 2 cm and T = 1.9~ the second term in (ii) exceeds the first for qB = 10-I W/cm=. 

The pressure distribution has the form displayed in Fig. 4. A steep change p(x) 
exp(--x/l) is also observed here, which then becomes more shallow, approaches the asymptote, 
and satisfies the equation 

ap 
_ _  --_ --pg. 

ax 
The total pressure change is 

i d~x + pgH, (12) 
ap A~q, 

= s r i  
4 o 

h e r e  AT = - ~ -  ~ - -  ~lP + ~2- 

This lastresult is quite important. Insofar as the authors know, the question of the 
additional contribution (as compared with the hydrostatic) to the pressure has not been dis- 
cussed in the literature. At the same time, this addition can be quite significant and even 
exceed the hydrostatic pressure noticeably. For example, for H = i0 cm, T = 1.9~ and qB = 
1 W/cm 2 the first term in (12) is approximately l0 ~ g/cm'sec 2, while pgH = 1.4"10 3 g/cm'sec 2. 

By analyzing the equation obtained, it can be said that the physical pattern of the 
process proposed by Rivers and MacFadden [3] is not accurate. If the thermodynamic state of 
He II in [3] was portrayed by a segment of the isotherm AB (see Fig. I) of length pgH, then 
certain other curves, for instance~ curves 2 or 3, would correspond to our results. The 
total temperature AT and pressure Ap drops are calculated from (Ii) and (12). It is impor- 
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Fig. 3. Temperature dependence on the coordinate x. 

Fig. 4. Pressure dependence on the coordinate x. 

tant to keep in mind here that, in contrast to the case of Rivers and MacFadden, the form 
of these curves depends on qB and a situation can he encountered for which an increase in 

the flux will result in an additional contribution to the pressure Ap such that PB + Ap > p%, 
andlthen lie I rather than a vapor will be the boundary to the He II layer. 

A formula relating qB to the quantities T B and H can be obtained from (ll) and (12). In 
fact, if it is considered that the interphasal surfaces are in thermodynamic equilibrium, then 

sat 

Here (~T/~P)sa  t i s  the  d e r i v a t i v e  to  the  e q u i l i b r i u m  curve  between the  l i q u i d  and v a p o r .  S ince  
the  q u a n t i t i e s  qB, TB, and H a r e  p a r a m e t e r s  i n  t h e s e  r e l a t i o n s ,  then  the  d e d u c t i o n  can be made 
t h a t  t h e r e  i s  a s i n g l e - v a l u e d  c o n n e c t i o n  be tween  them. Simple c o m p u t a t i o n s  r e s u l t  in  the  f o l -  
lowing  f o r m u l a  f o r  qB as a f u n c t i o n  o f  T B and H ( i n  i m p l i c i t  f o rm) :  

( P._P ~ q~ H #T A,qB 
~ + A ( T ) p o n (  Ps ] S ~T3 ~ at ST-'---[-- + pgH , (13) 

which i s ,  however ,  v a l i d  o n l y  f o r  no t  v e r y  l a r g e  t e m p e r a t u r e  d rops  b e c a u s e ,  f i r s t ,  the  l i n e a r  
s o l u t i o n  i s  i n v a l i d  in  the  case  o f  l a r g e  drops  and,  s econd ,  the  r e l a t i o n  AT = ( aT /~P)sa tA  p : is  
no t  t r u e .  For  l a r g e  Ap f o r m u l a s  (11) and (12) as  w e l l  as t a b l e s  must be u t i l i z e d  to  d e t e r -  
mine t he  f l u x e s .  There  i s  a s e r i o u s  o b s t a c l e  to  c o m p u t a t i o n s  o f  q(TB, H) by t h e s e  r e l a t i o n -  
s h i p s .  The f a c t  i s  t h a t  a t  t h i s  t ime t h e r e  a r e  no r e l i a b l e  d a t a  on the  k i n e t i c  c o e f f i c i e n t s  
f o r  He I I  which  a r e  i n  the  q u a n t i t i e s  l and hp; c o n s e q u e n t l y ,  c o m p u t a t i o n s  by the  f o r m u l a s  
presented will be only estimates in nature. 

Let us note another circumstance. In substance, the solution of the problem is valid 
for the case of heat~flux from a solid substrate. Indeed, up to the very last step (formula 
(13)) it was nowhere used that vapor is under the He II layer. In such a variant, (ii) and 
(12) can be used to compute qcr" Here, however, there is a complication, in principle, that 
AT and Ap are already not related by phase equilibrium conditions, but on the contrary, 
helium overheats near a solid surface. The overheating ATover is determined by the surface 
material, the processing, etc.* Measurement or computation of ATover is an independent prob- 
lem. However, if a certain ATover is given, then in this case the critical heat flux can be 
computed from. the formulas presented by beeping in mind that the difference AT -- kTover and 
the quantity Ap vary along the equilibrium curve. 

In concluding this part, we discuss the following. If the quantity Ap calculated by 
means of (12) results in the inequality PB + AP > P% (see Fig. i, curve 3), then nonsuper- 
fluid helium will be the boundary with He II. In this case, the examination presented in this 
paper is invalid. Indeed, without speaking about the fact that (1)-(3) are unsuitable in 
the region of the phase transition He II--He I we are simply not able to use the formulas ob- 
tained since many quantities are simply not defined at the transition point (are singular). 
In this case consideration of the problem should be performed specially. 

*As is known, in the theory of homogeneous nucleation there is no threshold value for ATover. 
On the contrary, any arbitrarily small overheating produces a small but finite probability 
of vapor seed formation. However, if a graph of the vapor seed density is displayed as a 
function of AT, then it can be seen that this curve grows abruptly for certain AT. This con- 
dition can provisionally be chosen as the threshold value of kTover. 
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2. Case of High Fluxes 

In this case the problem presented should be considered with nonlinear terms taken into 
account. Simple calculated estimates show that certain of them exert no substantial influence 
on the results obtained up to fluxes equal to tens of watts per square centimeter. For in- 
stance, the nonlinear term in the momentum flux tensor PsVsiVsk+OnVniVnk, which yields a 
contribution to the pressure in the final answer, only changes this latter by percents. Analo- 
gously, the contribution from terms related to the vortices which have the form gBL~ik (see 
[5]) is also not large. The nonlinear terms resulting in a temperature change also yield a 
moderate change. Indeed, the temperature gradient characteristic for the nonlinear case can 
be estimated from the equation for the superfluid velocity v s taken to second-order accuracy 
[6]: 

avs { v~ pn (vn__v~)}=O" (14) 0--7- + v  D+ 2p 

The chemical potential depends only on 'the pressure and temperature but not on the rela- 
tive velocity v n- Vs (see [6]): 

dl~ = --(rdT + l J _  dp, 
O 

(15) 

at + - - l  VP--~vTp -F V 2 2P (vn--vs)2 =0. 

Let us note that in the linear case there is the equality oVT = (I/0)Vp, i.e., the London 
relationshipsare satisfied. In the nonlinear case, the following estimate for the tempera- 
ture gradient follows from (15): 

I v T [ - -  p" 1 q~ Ps aH ~%~T ~" (16) 

For T = 1.9~ and qB :i W/cm 2 we have IVTI = 10-~~ while because of the Gorter-Mellink 
force the temperature gradient for the same parameters equals IVTI = lO-S~ Therefore, 
the nonlinear terms described exert no strong influence onthe temperature distribution. 
Nevertheless, there is still another reason for taking account of the nonlinear terms in the 
equations. Although the temperature gradients in the helium layer arenot large, the total 
temperature drop because of the large distances can be quite significant. For instance, for 
qB = 3 W/cm=, T = 1.9~ then ]VT I = 10-=~ which yields one degree per meter. For such 
drops it is naturally impossible to consider the thermodynamic quantities constant; conse- 
quently, nonlinear terms appear. For example, the expression 3Svn/~X should be as follows: 

- Ov~ av .  OS OT ua + ~T, and not S , as before. 
aT ax ax 

Let us examine what would be the result of such corrections. First, the change in den- 
sity can be neglected since the quantity 3p/3T is small in He II. The temperature jump near 
the boundary AT b = q~Z/x is also not large (for T = 1.9~ and q = 1 W/cm= the quantity AT b = 
IO-3~ i.e., there will be no noticeable change in the parameters in the layer near the bound- 
ary). Outside this layer, the terms with the kinetic coefficients can be neglected in (i)- 
(3). Also 3p/~x: pg can be considered outside this layer since, as has already been said, the 
total density is unchanged. We finally have 

--~x + pg ---- A (V) Pr~ ~'  (17) 
kP, / 

aSv,, _ O. 

ax 

Taking into account that ~/3p : l/p, while 3p/3x = --0g, we obtain 

B 

TSu~ = qB. 

From (19) and (20) we find the formula 

(18) 

(19) 

(2o) 

1418 



T~ O~ SaT a ( 9 ,  ]adT = __qa x, 
�9 " o r  o.A(r) (21) 
T6 

which implicitly expresses the temperature distribution in the helium layer in the large flux 
case. In the limit case of small fluxes (and respective temperature drops) we return to (ii). 
In the general case, the left side of (21) is integrated numerically. The velocity v n is 
then determined from (20). However, it is not now constant but changes so that the product 
TSv n remains equal to qB- Let us note again that we speak about a domain outside the layer 
I in which everything remains practically without change. 

In conclusion, it is interesting to discuss one more question. If qw, the heat flux from 
a plate, exceeds qB, then in what manner is the "excess" heat eliminated? As is known, in or- 
dinary liquids the heat is eliminated either by vapor bubbles or by using convention. But 
these and other mechanisms are also absent in lie II, because its heat conductivity is so large 
that the existence of bubbles and convective cells is impossible. Any overheated domain being 
formed is instantly resorbed, where the heat is entrained by second sound [2]. It is reason- 
able to consider that this mechanism (second sound) which makes bubble or convective cell 
formation impossible should perform their role during elimination of the "excess" heat flux: 
qw -- qB- In other words, the flow pattern considered seemingly is "modulated" by a system of 
chaotic second sound pulses (entropy pulses) that transfer heat to the helium free surface. 

NOTATION 

p, density of helium II; T, temperature; p, pressure; pn, ps, densities; Vn, Vs, normal 
and superfluid velocity components; S, ~, entropies per unit volume and unit mass; TB, PB' 
temperature and pressure on the free liquid surface; H, depth of submersion; qB, heat flux 
transferred through the helium; T, p~, temperature and pressure on the interphasal surface; 
j, mass flux density; n, ~i, ~2, ~, ~4, z , kinetic coefficients [6, 8]; A(T), mutual fric- 

tion coefficient [2, 5]; ~, 6, L, vortex ball parameters [5]; AT, Ap, combinations of kinetic 
coefficients (6), (12); l, characteristic length of the near-boundary temperature jump; V, A", 
x', dimensionless velocity, mutual friction coefficient, and coordinate, respectively; Ap, AT, 
total pressure and temperature drops in the helium layer; Pl, TI, pressure and temperature in 
the I transition; (~T/~P)sat, derivative to the equilibrium curve between the liquid and vapor; 
qcr, critical heat flux density; ~, chemical potential; g, free-fall acceleration; ATover , 
temperature of liquid overheating. 

l, 

2. 

3. 

4. 

5. 

6. 
7. 

8. 
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